Veridical Data Science The Practice of Responsible Data Analysis and Decision Making

by ;
Format: Hardcover
Pub. Date: 2024-10-15
Publisher(s): The MIT Press
List Price: $85.33

Buy New

Usually Ships in 5-7 Business Days
$85.24

Rent Textbook

Select for Price
There was a problem. Please try again later.

Used Textbook

We're Sorry
Sold Out

eTextbook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Using real-world data case studies, this innovative and accessible textbook introduces an actionable framework for conducting trustworthy data science.

Most textbooks present data science as a linear analytic process involving a set of statistical and computational techniques without accounting for the challenges intrinsic to real-world applications. Veridical Data Science, by contrast, embraces the reality that most projects begin with an ambiguous domain question and messy data; it acknowledges that datasets are mere approximations of reality while analyses are mental constructs. 
Bin Yu and Rebecca Barter employ the innovative Predictability, Computability, and Stability (PCS) framework to assess the trustworthiness and relevance of data-driven results relative to three sources of uncertainty that arise throughout the data science life cycle: the human decisions and judgment calls made during data collection, cleaning, and modeling. By providing real-world data case studies, intuitive explanations of common statistical and machine learning techniques, and supplementary R and Python code, Veridical Data Science offers a clear and actionable guide for conducting responsible data science. Requiring little background knowledge, this lucid, self-contained textbook provides a solid foundation and principled framework for future study of advanced methods in machine learning, statistics, and data science. 

  • Presents the Predictability, Computability, and Stability (PCS) methodology for producing trustworthy data-driven results
  • Teaches how a data science project should be conducted from beginning to end, including extensive discussion of the data scientist's decision-making process
  • Cultivates critical thinking throughout the entire data science life cycle
  • Provides practical examples and illuminating case studies of real-world data analysis problems with associated code, exercises, and solutions
  • Suitable for advanced undergraduate and graduate students, domain scientists, and practitioners

Author Biography

Bin Yu is Chancellor's Distinguished Professor and Class of 1936 Second Chair in Statistics, EECS, and Computational Biology at the University of California, Berkeley, a 2006 Guggenheim Fellow, and a member of the US National Academy of Sciences and the American Academy of Arts and Sciences.

Rebecca L. Barter is Research Assistant Professor in Epidemiology at the University of Utah.

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.