Fundamentals of Astrodynamics Second Edition

by ; ; ;
Edition: 2nd
Format: Paperback
Pub. Date: 2019-01-16
Publisher(s): Dover Publications
List Price: $24.95

Buy New

Usually Ships in 2-3 Business Days
$24.70

Rent Book

Select for Price
There was a problem. Please try again later.

Used Book

We're Sorry
Sold Out

eBook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Developed at the U S. Air Force Academy and a bestseller since its original 1971 Dover publication, this teaching text has been widely known and used throughout the astrodynamics and aerospace engineering communities. Completely revised and updated, this second edition takes into account new developments of the past four decades, especially regarding information technology.

Author Biography

All of the authors are present or former members of the faculty of the Department of Astronautics at the U.S. Air Force Academy. Jerry E. White is still active, and William W. Saylor is the new team member.

Table of Contents

Preface
About the Authors
Chapter 1 Two-Body Orbital Mechanics
1.1 Historical Background and Basic Laws
1.2 Basic Laws 1
1.3 The N-Body Problem 
1.4 The Two-Body Problem 
1.5 Constants of Motion
1.6 The Trajectory Equation 
1.7 Relating E and h to the Geometry of an Orbit
1.8 The Elliptical Orbit 
1.9 The Circular Orbit 
1.10 The Parabolic Orbit 
1.11 The Hyperbolic Orbit
1.12 Canonical Units
Chapter 2 Orbit Determination from Observations 
2.1 Historical Background 
2.2 Coordinate Systems 
2.3 Classical Orbital Elements 
2.4 Determining the Orbital Elements from r and v 
2.5 Determining r and v from the Orbital Elements 
2.6 Coordinate Transformations 
2.7 Orbit Determination from a SingularRadar Observation 
2.8 SEZ to IJK Transformation Using an Ellipsoid Earth Model 
2.9 The Measurement of Time
2.10 Orbit Determination from Three Position Vectors 
2.11 Orbit Determination from Optical Sightings 
2.12 Improving a Preliminary Orbit by Differential Correct
2.13 Space Surveillance 
2.14 Ground Track of a Satellite 
Chapter 3 Basic Orbital Maneuvers 
3.1 Historical Background 
3.2 Low-Altitude Earth Orbits 
3.3 High-Altitude Earth Orbits 
3.4 In-Plane Orbit Changes
3.5 Out-of-Plane Orbit Changes 
Chapter 4 Position and Velocity as a Function of Time 
4.1 Historical Background 
4.2 Time-of-Flight as a Function of
Eccentric Anomaly
4.3 A Universal Formulation for Time-of-Flight 
4.4 The Prediction Problem 
4.5 Implementing the Universal Variable Formulation 
4.6 Classical Formulations of the Kepler Problem 
Chapter 5 Orbit Determination from Two Positions and Time 
5.1 Historical Background 
5.2 The Gauss Problem—General Methods of Solution 
5.3 Solutions of the Gauss Problem via Universal Variables 
5.4 The p-Iteration Method 
5.5 The Gauss Problem Using the f and g Series 
5.6 The Original Gauss Method
5.7 Practical Applications of the Gauss Problem—Intercept and Rendezvous
5.8 Determination of Orbit from
Sighting Directions at Station 
Chapter 6 Ballistic Missile Trajectories 
6.1 Historical Background 
6.2 The General Ballistic Missile Problem 
6.3 Effect of Launching Errors on Range 
6.4 The Effect of Earth Rotation 
Chapter 7 Lunar Trajectories 
7.1 Historical Background 
7.2 The Earth-Moon System 
7.3 Simple Earth-Moon Trajectories 
7.4 The Patched-Conic Approximation
7.5 Noncoplanar Lunar Trajectories 
Chapter 8 Interplanetary Trajectories 
8.1 Historical Background
8.2 The Solar System
8.3 The Patched-Conic Approximation 
8.4 Noncoplanar Interplanetary Trajectories 
8.5 Planetary Flybys
Chapter 9 Perturbations 
9.1 Historical Background 
9.2 Cowell’s Method
9.3 Encke’s Method
9.4 Variation of Parameters or Elements 
9.5 Comments on Integration Schemes and Errors 
9.6 Numerical Integration Methods 
9.7 Analytic Formulations of Perturbative Accelerations 
Chapter 10 Special Topics
10.1 Historical Background 
10.2 General Perturbation Models 
10.3 NORAD Propagators and Two-Line Element Sets 
10.4 Relative Motion of Satellites
Appendix A Astrodynamic Constants
Appendix B Vector Review 
B.1 Definitions
B.2 Vector Operations 
B.3 Velocity
Appendix C Gauss Problem 
Appendix D Proposed Three-Line Element Set
Definition 
Index

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.