|
|
1 | (21) |
|
Prototype of statistical problems |
|
|
1 | (2) |
|
Statistical problems and their models |
|
|
3 | (3) |
|
Statistical uncertainty: inevitable controversies |
|
|
6 | (2) |
|
The emergence of statistics |
|
|
8 | (6) |
|
|
14 | (5) |
|
|
19 | (2) |
|
Elements of likelihood inference |
|
|
21 | (32) |
|
|
21 | (3) |
|
|
24 | (3) |
|
|
27 | (2) |
|
|
29 | (1) |
|
Maximum and curvature of likelihood |
|
|
30 | (5) |
|
Likelihood-based intervals |
|
|
35 | (6) |
|
Standard error and Wald statistic |
|
|
41 | (2) |
|
|
43 | (2) |
|
Practical implications of invariance principle |
|
|
45 | (3) |
|
|
48 | (5) |
|
More properties of the likelihood |
|
|
53 | (20) |
|
|
53 | (2) |
|
|
55 | (3) |
|
|
58 | (3) |
|
|
61 | (3) |
|
Calibration in multiparameter case |
|
|
64 | (3) |
|
|
67 | (6) |
|
Basic models and simple applications |
|
|
73 | (44) |
|
Binomial or Bernoulli models |
|
|
73 | (3) |
|
Binomial model with under- or overdispersion |
|
|
76 | (2) |
|
Comparing two proportions |
|
|
78 | (4) |
|
|
82 | (2) |
|
Poisson with overdispersion |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
89 | (6) |
|
|
95 | (7) |
|
Box-Cox transformation family |
|
|
102 | (2) |
|
|
104 | (3) |
|
|
107 | (10) |
|
|
117 | (32) |
|
|
117 | (2) |
|
Estimating and reducing bias |
|
|
119 | (4) |
|
Variability of point estimates |
|
|
123 | (2) |
|
|
125 | (3) |
|
CI and coverage probability |
|
|
128 | (3) |
|
Confidence density, CI and the bootstrap |
|
|
131 | (3) |
|
Exact inference for Poisson model |
|
|
134 | (5) |
|
Exact inference for binomial model |
|
|
139 | (1) |
|
|
140 | (2) |
|
|
142 | (3) |
|
|
145 | (4) |
|
Modelling relationships: regression models |
|
|
149 | (44) |
|
|
150 | (4) |
|
Logistic regression models |
|
|
154 | (3) |
|
Poisson regression models |
|
|
157 | (3) |
|
Nonnormal continuous regression |
|
|
160 | (3) |
|
Exponential family regression models |
|
|
163 | (3) |
|
|
166 | (8) |
|
Iterative weighted least squares |
|
|
174 | (4) |
|
Box-Cox transformation family |
|
|
178 | (3) |
|
Location-scale regression models |
|
|
181 | (6) |
|
|
187 | (6) |
|
Evidence and the likelihood principle* |
|
|
193 | (20) |
|
|
193 | (1) |
|
Sufficiency and the likelihood principles |
|
|
194 | (2) |
|
Conditionality principle and ancillarity |
|
|
196 | (1) |
|
|
197 | (2) |
|
Sequential experiments and stopping rule |
|
|
199 | (5) |
|
|
204 | (2) |
|
Questioning the likelihood principle |
|
|
206 | (5) |
|
|
211 | (2) |
|
Score function and Fisher information |
|
|
213 | (18) |
|
Sampling variation of score function |
|
|
213 | (2) |
|
|
215 | (1) |
|
|
216 | (3) |
|
Properties of expected Fisher information |
|
|
219 | (2) |
|
|
221 | (2) |
|
Minimum variance unbiased estimation* |
|
|
223 | (3) |
|
|
226 | (2) |
|
|
228 | (3) |
|
|
231 | (42) |
|
|
231 | (4) |
|
Distribution of the score statistic |
|
|
235 | (3) |
|
Consistency of MLE for scalar θ |
|
|
238 | (3) |
|
Distribution of MLE and the Wald statistic |
|
|
241 | (2) |
|
Distribution of likelihood ratio statistic |
|
|
243 | (1) |
|
Observed versus expected information* |
|
|
244 | (3) |
|
Proper variance of the score statistic* |
|
|
247 | (1) |
|
Higher-order approximation: magic formula* |
|
|
247 | (9) |
|
Multiparameter case: &thetas; &epsis; Rp |
|
|
256 | (3) |
|
|
259 | (5) |
|
|
264 | (4) |
|
|
268 | (2) |
|
|
270 | (3) |
|
Dealing with nuisance parameters |
|
|
273 | (24) |
|
Inconsistent likelihood estimates |
|
|
274 | (2) |
|
Ideal case: orthogonal parameters |
|
|
276 | (2) |
|
Marginal and conditional likelihood |
|
|
278 | (3) |
|
|
281 | (2) |
|
|
283 | (3) |
|
Modified profile likelihood* |
|
|
286 | (6) |
|
|
292 | (2) |
|
|
294 | (3) |
|
|
297 | (44) |
|
|
297 | (2) |
|
|
299 | (3) |
|
|
302 | (3) |
|
|
305 | (4) |
|
|
309 | (5) |
|
Survival regression models |
|
|
314 | (2) |
|
Hazard regression and Cox partial likelihood |
|
|
316 | (4) |
|
|
320 | (4) |
|
Replicated Poisson processes |
|
|
324 | (7) |
|
Discrete time model for Poisson processes |
|
|
331 | (4) |
|
|
335 | (6) |
|
|
341 | (24) |
|
|
341 | (1) |
|
|
342 | (2) |
|
|
344 | (4) |
|
|
348 | (1) |
|
|
349 | (3) |
|
|
352 | (2) |
|
Estimating infection pattern |
|
|
354 | (2) |
|
Mixed model estimation* |
|
|
356 | (3) |
|
|
359 | (3) |
|
|
362 | (3) |
|
Robustness of likelihood specification |
|
|
365 | (20) |
|
Analysis of Darwin's data |
|
|
365 | (2) |
|
Distance between model and the `truth' |
|
|
367 | (3) |
|
Maximum likelihood under a wrong model |
|
|
370 | (2) |
|
|
372 | (3) |
|
Comparing working models with the AIC |
|
|
375 | (4) |
|
|
379 | (4) |
|
|
383 | (2) |
|
Estimating equation and quasi-likelihood |
|
|
385 | (24) |
|
|
387 | (3) |
|
Computing β in nonlinear cases |
|
|
390 | (3) |
|
|
393 | (2) |
|
Generalized estimating equation |
|
|
395 | (3) |
|
|
398 | (6) |
|
|
404 | (5) |
|
|
409 | (16) |
|
|
409 | (4) |
|
Double-bootstrap likelihood |
|
|
413 | (2) |
|
|
415 | (3) |
|
|
418 | (2) |
|
General cases: M-estimation |
|
|
420 | (2) |
|
Parametric versus empirical likelihood |
|
|
422 | (2) |
|
|
424 | (1) |
|
Likelihood of random parameters |
|
|
425 | (10) |
|
The need to extend the likelihood |
|
|
425 | (2) |
|
|
427 | (2) |
|
Defining extended likelihood |
|
|
429 | (4) |
|
|
433 | (2) |
|
Random and mixed effects models |
|
|
435 | (38) |
|
Simple random effects models |
|
|
436 | (3) |
|
Normal linear mixed models |
|
|
439 | (3) |
|
Estimating genetic value from family data* |
|
|
442 | (2) |
|
Joint estimation of β and b |
|
|
444 | (1) |
|
Computing the variance component via β and b |
|
|
445 | (3) |
|
|
448 | (4) |
|
Extension to several random effects |
|
|
452 | (6) |
|
Generalized linear mixed models |
|
|
458 | (2) |
|
|
460 | (2) |
|
Approximate likelihood in GLMM |
|
|
462 | (7) |
|
|
469 | (4) |
|
|
473 | (30) |
|
|
473 | (4) |
|
Linear mixed models approach |
|
|
477 | (2) |
|
Imposing smoothness using random effects model |
|
|
479 | (2) |
|
Penalized likelihood approach |
|
|
481 | (1) |
|
Estimate of f given σ2 and σ2b |
|
|
482 | (3) |
|
Estimating the smoothing parameter |
|
|
485 | (4) |
|
|
489 | (1) |
|
|
489 | (1) |
|
Smoothing nonequispaced data* |
|
|
490 | (2) |
|
|
492 | (5) |
|
Nonparametric density estimation |
|
|
497 | (3) |
|
Nonnormal smoothness condition* |
|
|
500 | (1) |
|
|
501 | (2) |
Bibliography |
|
503 | (12) |
Index |
|
515 | |